Combining contrastive and supervised learning for video super-resolution detection

Author:

Meshchaninov Viacheslav PavlovichORCID,Molodetskikh Ivan AndreevichORCID,Vatolin Dmitriy SergeevichORCID,Voloboy Alexey GennadievichORCID

Abstract

Upscaled video detection is a helpful tool in multimedia forensics, but it’s a challenging task that involves various upscaling and compression algorithms. There are many resolution-enhancement methods, including interpolation and deep-learning based super-resolution, and they leave unique traces. This paper proposes a new upscaled-resolution-detection method based on learning of visual representations using contrastive and cross-entropy losses. To explain how the method detects videos, the major components of our framework are systematically reviewed — in particular, it is shown that most data-augmentation approaches hinder the learning of the method. Through extensive experiments on various datasets, our method has been shown to effectively detects upscaling even in compressed videos and outperforms the state-of-theart alternatives. The code and models are publicly available at https://github.com/msu-video-group/SRDM.

Publisher

Keldysh Institute of Applied Mathematics

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3