Abstract
The exact governing equation of radiative acoustics in radiating grey gas is derived in this work, taking into account the influence of the transverse magnetic field. The radiative MHD is described by three equations of hydrodynamics and two equations of radiation momentum with extensive use of the formalism of radiative thermodynamics. In order to describe the propagation of linear radiative magneto-acoustic perturbation waves with scattering and attenuation, radiation-thermal dissipation conditions, radiation drag force, and magnetic force and Joule heat are introduced into these equations. The Eddington approximation is used, which allows us to study the modes of radiative magneto-hydrodynamic waves in two asymptotic cases - optically thin and thick gas. The exact governing equation derived in this paper allows, using the heuristic Whitham method, to obtain a set of approximate governing equations of lower order, each of which is part of a reliable approximation to the exact equation in a certain region of the independent time variable. The relatively simple form of such equations allows, without formally solving the full problem, to investigate the physical processes occurring in each radiative magneto-hydrodynamic linear travelling wave.
Publisher
Keldysh Institute of Applied Mathematics
Subject
General Materials Science
Reference29 articles.
1. Бисноватый-Коган Г. С., Блинников С. И. Распространение волн в средах с высоким давлением излучения. I. Уравнения и случай однородной среды // Астрофизика. 1978. Т. 14. С. 563-577.
2. Колесниченко А.В. Простые волны и малоамплитудные возмущения в радиационной газодинамике.// Препринты ИПМ им. М.В. Келдыша. 2023. № 48. 34 с. https://doi.org/10.20948/prepr-2023-48 https://library.keldysh.ru/preprint.asp?id=2023-48
3. Куликовский А.Г., Свешникова Е.И. Нелинейные волны в упругих средах // М.: Изд.- во: Московский лицей. 1998. 412 с.
4. Курант Р., Фридрихс К. Сверхзвуковое течение и ударные волны // Москва: Изд-во Ин. Лит. 1950. 426 с.
5. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука. 1986. 733 с.