Jeans instability of an astrophysical self-gravitating medium in the presence of high radiation pressure and diffusion transfer of radiation

Author:

Kolesnichenko Aleksandr VladimirovichORCID

Abstract

Within the framework of the problem of modeling the evolution of a protostellar disk, the influence of radiation on the Jeans gravitational instability for a self-gravitating optically thick (for intrinsic infrared radiation) gas-dust medium is discussed, taking into account the influence of radiation pressure and diffusion transfer of radiation on the critical wavelength of the perturbing wave. Two approximations of radiative diffusion are considered: 1. the case of ideal radiative equilibrium, when the temperatures of matter and radiation are the same; 2. the case of the time dependence of the radiation field, when there is an energy decoupling between radiation and matter. Using the analysis of the normal regime, dispersion relations are derived that allow one to obtain modifications of the Jeans gravitational instability criterion under the influence of radiation pressure and radiation diffusion. In particular, it is shown that, in contrast to local radiation equilibrium, when the acoustic velocity of the gas coincides with the isothermal speed of sound, in the case of a difference in the temperatures of radiation and gas, the perturbing wave propagates with the adiabatic speed of sound in the gas. The results obtained are aimed at solving the problem of gravitational instability of individual massive protostellar disks or self-gravitating radiation media characterized by large optical depths for their own infrared radiation transformed by dust.

Publisher

Keldysh Institute of Applied Mathematics

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3