Affiliation:
1. Keldysh Institute of Applied Mathematics
Abstract
The classic method by Prager and Synge ("hypercircle" method) for a posteriori error estimation in addressed from the viewpoint of the extension of the applicability domain (the range of analyzed problems and methods of the realization). The nonintrusive version of the approximation error estimation that implements the method by Prager and Synge for the arbitrary PDE system is presented. The semiheuristical variant of the Prager and Synge method may be related with the modern approaches for approximation error estimation on the ensemble of solutions obtained by the algorithms of different inner structure.
Publisher
Keldysh Institute of Applied Mathematics
Reference33 articles.
1. Guide for the Verification and Validation of Computational Fluid Dynamics Simulations. American Institute of Aeronautics and Astronautics. AIAA-G-077-1998, Reston, VA. 1998.
2. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer. ASME V&V 20-2009. 2009.
3. ГОСТ Р 57700.12–2018. Численное моделирование сверхзвуковых течений невязкого газа. Верификация ПО // Национальный стандарт РФ по численному моделированию физических процессов. 2018. 20 с.
4. Richardson L.F. The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations with an Application to the Stresses in a Masonry Dam // Transactions of the Royal Society of London, Series A. 1908. V. 210. P. 307-357.
5. Roy Ch.J. Grid Convergence Error Analysis for Mixed-Order Numerical Schemes // AIAA Journal. 2003. V. 41. №. 4. P. 595-604. https://doi.org/10.2514/2.2013