Abstract
Iterations of independent random linear operators in the Hilbert space of square integrable functions on a finite dimensional Euclidean space are studied. Random operator under consideration take values in the algebra of operators which is generated by an operators of a shift on a vector of Euclidean space of the argument of a function or the argument of its Fourier image, operators of orthogonal mapping and operators of contraction of argument space. We obtain the conditions sufficient to convergence of a sequence of mean values of compositions of operator valued processes with values in the considered algebra of linear operators to the semigroup describing the diffusion in finite dimensional Euclidean space. Generators of limit semigroups are described.
Publisher
Keldysh Institute of Applied Mathematics
Reference30 articles.
1. Furstenberg H. Non-commuting random products // Trans. Amer. Math. Soc. 1963. V. 108. No 3. P. 377-428.
2. Тутубалин В.Н. Некоторые теоремы типа усиленного закона больших чисел // Теория вероятн. и ее примен. 1969. Т. 14. № 2. С. 319-326.
3. Тутубалин В.Н. О предельных теоремах для произведения случайных матриц // Теория вероятн. и ее примен. 1965. Т. 10. № 1. С. 19-32.
4. Летчиков А.В. Условная предельная теорема для произведений случайных матриц // Матем. сб. 1995. Т. 186. № 3. С. 65-84.
5. Berger M.A. Central limit theorem for products of random matrices // Trans. AMS. 1984. V. 285. No 2. P. 777-803.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Generalized Coherent States and Random Shift Operators;Proceedings of the Steklov Institute of Mathematics;2024-03