Affiliation:
1. GITAM (Deemed to be University)
2. Andhra University
Abstract
The present study focusses on the existence of positivity of the solutions to the higher order three-point boundary value problems involving $p$-Laplacian
$$[\phi_{p}(x^{(m)}(t))]^{(n)}=g(t,x(t)),~~t \in [0, 1],$$
$$
\begin{aligned}
x^{(i)}(0)=0, &\text{~for~} 0\leq i\leq m-2,\\
x^{(m-2)}(1)&-\alpha x^{(m-2)}(\xi)=0,\\
[\phi_{p}(x^{(m)}(t))]^{(j)}_{\text {at} ~ t=0}&=0, \text{~for~} 0\leq j\leq n-2,\\
[\phi_{p}(x^{(m)}(t))]^{(n-2)}_{\text {at} ~ t=1}&-\alpha[\phi_{p}(x^{(m)}(t))]^{(n-2)}_{\text {at} ~ t=\xi}=0,
\end{aligned}
$$
where $m,n\geq 3$, $\xi\in(0,1)$, $\alpha\in (0,\frac{1}{\xi})$ is a parameter.
The approach used by the application of Guo--Krasnosel'skii fixed point theorem to determine the existence of positivity of the solutions to the problem.
Subject
Applied Mathematics,Analysis
Reference38 articles.
1. [1] H. Afshari, S. Kalantari, E. Karapinar, Solution of fractional differential equations via coupled fixed point, Electron. J.
Differ. Equ. 2015 (2015) 1-12.
2. [2] H. Afshari, E, Karapinar, A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer
fractional derivative on b-metric spaces, Adv. Differ. Equ. 2020 (2020) 1-11.
3. [3] R.P. Agarwal, H. Lü, D. O’Regan, Eigenvalues and the one-dimensional p-Laplacian, J. Math. Anal. Appl. 266 (2002)
383-400.
4. [4] R.I. Avery, J. Henderson, Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian, J.
Math. Anal. Appl. 277 (2003) 395-404.
5. [5] A.C. Cavalheiroa, Existence results for Navier problems with degenerated (p,q)-Laplacian and (p,q)-Biharmonic operators,
Results Nonlinear Anal. 1 (2018) 74-87.