Affiliation:
1. Institute of Mathematics and Mathematical Modeling
Abstract
The work studies boundary value problems with non-dynamic and dynamic boundary conditions for one- and two-dimensional Boussinesq-type equations in domains representing a trapezoid, triangle, "curvilinear" trapezoid, "curvilinear" triangle, truncated cone, cone, truncated "curvilinear" cone, and "curvilinear" cone. Combining the methods of the theory of monotone operators and a priori estimates, in Sobolev classes, we have established theorems on the unique weak solvability of the boundary value problems under study.
Funder
the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan
Subject
Applied Mathematics,Analysis
Reference24 articles.
1. [1] H. P. McKean, Boussinesq’s Equation on the Circle, Commun. Pure. Appl. Math. 27 (1981), 599–691.
2. [2] Z. Y. Yan, F.D. Xie, H.Q. Zhang, Symmetry Reductions, Integrability and Solitary Wave Solutions to Higher-Order Modified Boussinesq Equations with Damping Term, Commun. Theor. Phys. 36 (2001), 1–6.
3. [3] V. F. Baklanovskaya, A. N. Gaipova, On a two-dimensional problem of nonlinear filtration, Zh. Vychisl. Math. i Math. Phiz., 6 (1966), 237–241 (in Russian).
4. [4] J. L. Vazquez, The Porous Medium Equation. Mathematical Theory, Oxford University Press, Oxford (2007). XXII+625p.
5. [5] P. Ya. Polubarinova-Kochina, On a nonlinear differential equation encountered in the theory of infiltration, Dokl. Akad. Nauk SSSR, 63 (1948), 623–627.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献