Heat transfer analysis of Radiative-Marangoni Convective flow in nanofluid comprising Lorentz forces and porosity effects

Author:

ZARİ Islam1,GUL Taza2,DOSMAGULOVA Karlygash3,KHAN Tahir Saeed1,HAQ Safia1

Affiliation:

1. University of Peshawar

2. City University of Science and Information Technology

3. Ghent University

Abstract

The present work investigates the impacts of the Lorentz forces, porosity factor, viscous dissipation and radiation in thermo-Marangoni convective flow of a nanofluids (comprising two distinct kinds of carbon nanotubes ($CNT_{s}$)), in water ($H_{2}O$). Heat transportation developed by Marangoni forces happens regularly in microgravity situations, heat pipes, and in crystal growth. Therefore, Marangoni convection is considered in the flow model. A nonlinear system is constructed utilizing these assumptions which further converted to ordinary differential equations (ODEs) by accurate similarity transformations. The homotopic scheme is utilized to compute the exact solution for the proposed system. The study reveals that higher estimations of Hartmann number and Marangoni parameter speed up the fluid velocity while the opposite behavior is noted for porosity factor. Further, the rate of heat transfer shows upward trend for the Hartmann number, Marangoni parameter, nanoparticle solid volume fraction, radiation parameter whereas a downward trend is followed by the Brinkman number and porosity factor. It is fascinating to take observe that contemporary analytical outcomes validate the superb convergence with previous investigation.

Publisher

Erdal Karapinar

Subject

Applied Mathematics,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asymptotics Solutions of a Singularly Perturbed Integro-differential Fractional Order Derivative Equation with Rapidly Oscillating Coefficients;Advances in the Theory of Nonlinear Analysis and its Application;2023-07-23

2. An asymptotic homogenization formula for complex permittivity and its application;Advances in the Theory of Nonlinear Analysis and its Application;2023-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3