Author:
ROMAGUERA BONİLLA Salvador
Abstract
In this note we show the somewhat surprising fact that the proof of the `if part' of the distinguished characterizations of metric completeness due to Kirk, and Suzuki and Takahashi, respectively, can be deduced in a straightforward manner from Hu's theorem that a metric space is complete if and only if any Banach contraction on bounded and closed subsets thereof has a fixed point. We also take advantage of this approach to easily deduce a characterization of metric completeness via fixed point theorems for $\alpha -\psi $-contractive mappings.
Subject
Applied Mathematics,Analysis