Abstract
Objective:In this study we will get EMG signals from arm for different elbow gestures, than filtering the signal and later classification the signal. The reason for doing is that, EMG signals are used for many rehabilitation and assistive prostheses of paralyzed or injured people. Methods:Filtering a biological signal is the key point for these type studies. Filtering the EMG signals needed and starts with the elimination of the 50 Hz mains supply noise. After filtering the signal, feature extraction will be applied for both wrist flexion and wrist extension cases. There are many feature extraction methods for time and frequency domain. After feature extraction, classification of hand movements will be studied using extracted features. Classification is made using K Nearest Neighbor algorithm. The dataset used in this study is acquired by the EMG signal acquisition tool and belong to us. Results:90 % accuracy performance is obtained by K Nearest Neighbor algorithm purposed signal classification. Conclusion:This system is capable of conducting the classification process with a good performance to biomedical studies. So,this structure can be helpful as machine-learning based decision support system for medical purpose.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献