NATURAL ELECTROMAGNETIC MODES OF A COMPOSITE OPEN STRUCTURE INVOLVING A PERFECTLY CONDUCTING STRIP GRATING, AN INHOMOGENEOUS FERRITE LAYER, AND A MONOLAYER OF GRAPHENE

Author:

,Brovenko A.,Melezhik P., ,Poyedinchuk A., ,Senkevych O., ,Yashina N.,

Abstract

Subject and Purpose. Сonsidered are the natural modes and their correspondent eigenfrequencies of a composite structure which is nonuniform along one of the coordinates and consists of a lossy ferromagnetic layer placed in a static magnetic field. The layer involves a perfectly conducting strip grating at one of its boundaries and a graphene monolayer at the other. Methods and Methodology. The above stated problem can be approached within the analytical regularization procedure developed for dual series equations. The latter concern a broad class of diffraction problems which include, in particular, the diffraction of monochromatic plane waves on strip gratings placed at the boundary of a gyromagnetic medium. The amplitudes of the electromagnetic eigenmodes can be obtained from the infinite set of homogeneous linear algebraic equations solvable within a truncation technique. The roots of the system’s determinant represent complex-valued eigenfrequencies of the system under investigation. The material parameters adopted in our computations for the ferromagnetic layer correspond to such of yttrium iron garnet. Results. A number of numerical programs have been developed which permit analyzing the dependences of wave field eigenfunctions and complex eigenfrequencies upon geometrical parameters of the structure (such as grating slot width and period, and thickness of the lossy layer), as well as on electrodynamic parameters of the ferromagnet and graphene characteristics, specifically the chemical potential and relaxation energy of electrons. A number of behavioral regularities have been established, as well as the effect of non-uniformity of ferrite layer parameters upon the structure’s eigenfrequencies and wave field eigenfunctions. Conclusions. The structure under study has been shown to be is an open oscillatory system with a set of complex-valued natural frequencies demonstrating finite points of accumulation. The real parts of these eigenfrequencies lie in a certain interval determined by characteristic frequencies of the ferrite layer, while the imaginary parts are negative, such that the correspondent natural modes show an exponential decay with time. The grating edges represent the mirrors which the natural surface oscillations are reflected from, being supported at that by the ferromagnetic medium. The results obtained in this paper can be useful for creating the elemental base for microwave devices and the devices themselves.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3