Narrow-band controllable sources of IR emission based on one-dimensional magneto-optical photonic structures

Author:

Venger E.F., ,Morozhenko V.O.,

Abstract

Creation of controllable narrow-band emission sources for the mid- and long-wavelength infrared ranges is one of the primary tasks of infrared technology. In this paper, we propose and demonstrate non-luminescent (thermal) magnetically controllable sources of infrared emission based on semiconductor magneto-optical photonic structures (MOPS). It is shown that interference effects cause narrow-band thermal emission spectrum of such sources, and magnetic field makes it possible to effectively control the spectral and amplitude characteristics of emissivity in the mid- and long-wavelength infrared range. Influence of the MOPS composition and design on the source emissive characteristics is studied. Using the obtained results, the designs of A3B5 semiconductor compounds based sources with dynamically tunable spectrum and amplitude modulation of emission are proposed. Theoretical modeling has shown the possibility of dynamic control of their emission parameters by achievable magnetic fields. Such sources may be used in environmental monitoring systems, medicine, forensics, infrared spectroscopy, etc.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3