Space charge region recombination, non-radiative exciton recombination and the band-narrowing effect in high-efficiency silicon solar cells

Author:

Sachenko A.V., ,Kostylyov V.P.,Vlasiuk V.M.,Sokolovskyi I.O.,Evstigneev M.,Dvernikov D.F.,Korkishko R.M.,Chernenko V.V., , , , , , ,

Abstract

An expression for finding the dependence of narrowing the bands in silicon ΔEg on the level of illumination from the intrinsic absorption band (or short-circuit current) has been proposed. This expression is used to find experimental values of ΔEg in high-efficient silicon solar cells. The dependence ΔEg (J) or dependence ΔEg (JI), where JI is the short-circuit current density, has been rebuilt into the ΔEg (ΔnOC) dependence, where ΔnOC is the excitation level in open-circuit conditions. With this aim, the generation-recombination balance equation was solved taking into account six recombination mechanisms in silicon, including Shockley–Reed–Hall recombination, radiative recombination, interband Auger recombination, surface recombination, non-radiative exciton recombination, and recombination in the space charge region. The latter two recombination terms are not taken into account in studies of the key parameters of silicon solar cells and in programs for simulating the characteristics of these solar cells. Therefore, in this work their correct definition was performed, their contribution was compared with the contribution of other recombination mechanisms, and it has been shown that the description of the characteristics and key parameters of silicon SC without taking them into account is insufficiently correct. The experimental dependences ΔEg (ΔnOC) obtained in the work were compared with Schenk’s theory. It has been shown that there is a good agreement between them.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3