The Silicon Tracking System of the CBM Experiment at FAIR

Author:

Lymanets A.

Abstract

The Compressed Baryonic Matter (CBM) experiment at FAIR (Darmstadt, Germany) is designed to study the dense nuclear matter in a fixed target configuration with heavy ion beams up to kinetic energies of 11 AGeV for Au+Au collision. The charged particle tracking with below 2% momentum resolution will be performed by the Silicon Tracking System (STS) located in the aperture of a dipole magnet. The detector will be able to reconstruct secondary decay vertices of rare probes, e.g., multistrange hyperons, with 50 мm spatial resolution in the heavy-ion collision environment with up to 1000 charged particle per inelastic interaction at the 10 MHz collision rate. This task requires a highly granular fast detector with radiation tolerance enough to withstand a particle fluence of up to 1014 neq/cm2 1-MeV equivalent accumulated over several years of operation. The system comprises 8 tracking stations based on double-sided silicon microstrip sensors with 58 мm pitch and strips oriented at 7.5∘ stereo angle. The analog signals are read out via stacked microcables (up to 50 cm long) by the front-end electronics based on the STS-XYTER ASIC with self-triggering architecture. Detector modules with this structure will have a material budget between 0.3% and 1.5% radiation length increasing towards the periphery. First detector modules and ladders built from pre-final components have been operated in the demonstrator experiment mCBM at GSI-SIS18 (FAIR Phase-0) providing a test stand for the performance evaluation and system integration. The results of mSTS detector commissioning and the performance in the beam will be presented.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Subject

General Physics and Astronomy

Reference9 articles.

1. B. Friman et al. The CBM Physics Book, Compressed Baryonic Matter in Laboratory Experiments. Lecture Notes in Physics 814 (2011) [ISBN: 978-3-642-13292-6].

2. J. Heuser et al. Technical Design Report for the CBM. Silicon Tracking System (STS). GSI Report 2013-4, Darmstadt (2013), 167 p.

3. J. Heuser et al. Description of the STS microstrip sensors for series production. CBM-TN-19005 (technical note), Darmstadt (2019).

4. V.M. Borshchov et al. Pre-series production of microcables for STS detector modules at LTU Ltd. CBM Progress Report 2015 (2016), 36.

5. K. Kasinski, R. Kleczek, R. Szczygiel. Front-end readout electronics considerations for Silicon Tracking System and Muon Chamber. J. Inst. 11, C02024 (2016).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quality assessment system for monolithic active micropixel detectors;Nuclear Physics and Atomic Energy;2023-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3