Peculiarities of the Energy Transfer of Electronic Excitation in Carbazolyle-Containing Polymers

Author:

Skryshevski Yu. A.,Vakhnin A. Yu.

Abstract

Luminescence spectra of poly-N-vinylcarbazole (PVK), poly-N-epoxypropylcarbazole (PEPK), poly-N-vinyl-3-chlorocarbazole (Cl-PVK), and polystyrene (PS) films doped with bis[2-(2′-benzothienyl)-pyridinato-N,C3′](acetylacetonate) iridium [Btp2Ir(acac)] have been studied. The indicated carbazole-containing polymers are promising for the application in electroluminescence devices. The quantum yield of sensitized phosphorescence by Btp2Ir(acac) molecules in carbazole-containing polymer matrices is found to be lower than at their direct excitation in the PS matrix. The additional doping of the PVK-based composite with benzophenone, which transforms some of singlet excitons into triplet ones, diminishes the intensity of the sensitized phosphorescence of Btp2Ir(acac) molecules, which testifies that the efficiency of energy transfer via singlet excitons is higher than via triplet ones. The results obtained can be explained by a competition between the process of energy transfer onto the acceptor site, on the one hand, and the processes of exciton localization at the tail energy states and the trapping of triplet excitons by the products of polymer oxidation, on the other hand. The quantum yield of sensitized phosphorescence by Btp2Ir(acac) molecules in the PVK matrix is found to be almost 1.5 times lower than in the PEPK one. A conclusion is drawn that, in the PVKmatrix, the process of singlet exciton autolocalization at excimer-forming centers followed by the creation of sandwich-like excimers competes with the process of excitation energy transfer onto the acceptor.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3