Author:
Hussain S., ,Rahman Md.M.,Prodhan Md.T., ,
Abstract
An In0.17Ga0.83N light emitting diode (LED) structure on ScAlMgO4 (0001) substrate is modeled for high intensity red emission. The high indium composition (In > 15%) inside the c-plane polar quantum well (QW) for longer wavelength emission degrades the structural and optical properties of LEDs because of induced strain energy and quantum confinement Stark effect. To compensate these effects, it has been demonstrated by simulation that an AlyGa1–yN cap layer of 2 nm thick and Al composition of 17% deposited onto QW of 3 nm thick and In composition of 35% will allow to have less defect density and higher intensity red emission at 663 nm than that of In0.17Ga0.83N/InxGa1–xN LEDs grown on ScAlMgO4 (0001) substrate. This LED structure has perfect in-plane equilibrium lattice parameter (αeq = 3.249 Å) and higher logarithmic oscillator strength (Γ = –0.93) values.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献