The Effect of High-Intensity Electron Beam on the Crystal Structure, Phase Composition, and Properties of Al–Si Alloys with Different Silicon Content

Author:

Zaguliaev D. V.,Konovalov S. V.,Ivanov Yu. F.,Gromov V. E.,Shlyarov V. V.,Rubannikova Yu. A.

Abstract

The study deals with the element–phase composition, microstructure evolution, crystal-lattice parameter, and microdistortions as well as the size of the coherent scattering region in the Al–10.65Si–2.11Cu and Al–5.39Si–1.33Cu alloys irradiated with the high-intensity electron beam. As revealed by the methods of x-ray phase analysis, the principal phases in untreated alloys are the aluminium-based solid solution, silicon, intermetallics, and Fe2Al9Si2 phase. In addition, the Cu9Al4 phase is detected in Al–10.65Si–2.11Cu alloy. Processing alloys with the pulsed electron beam induces the transformation of lattice parameters of Al–10.65Si–2.11Cu (aluminium-based solid solution) and Al–5.39Si–1.33Cu (Al1 and Al2 phases). The reason for the crystal-lattice parameter change in the Al–10.65Si–2.11Cu and Al–5.39Si–1.33Cu alloys is suggested to be the changing concentration of alloying elements in the solid solution of these phases. As established, if a density of electron beam is of 30 and 50 J/cm2, the silicon and intermetallic compounds dissolve in the modified layer. The state-of-the-art methods of the physical materials science made possible to establish the formation of a layer with a nanocrystalline structure of the cell-type crystallization because of the material surface irradiation. The thickness of a modified layer depends on the parameters of the electron-beam treatment and reaches maximum of 90 µm at the energy density of 50 J/cm2. According to the transmission (TEM) and scanning (SEM) electron microscopy data, the silicon particles occupy the cell boundaries. Such changes in the structural and phase states of the materials response on their mechanical characteristics. To characterize the surface properties, the microhardness, wear parameter, and friction coefficient values are determined directly on the irradiated surface for all modification variants. As shown, the irradiation of the material surface with an intensive electron beam increases wear resistance and microhardness of the Al–10.65Si–2.11Cu and Al–5.39Si–1.33Cu alloys.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Subject

Metals and Alloys,Surfaces, Coatings and Films,Fluid Flow and Transfer Processes,Condensed Matter Physics,Materials Science (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3