Nanocellulose-Based Resistive Sensors for Air Humidity Measurements

Author:

LAPSHUDA V.ORCID,KOVAL V.ORCID,DUSHEIKO M.ORCID,YASIIEVYCH Yu.ORCID,BARBASH V.ORCID,YASHCHENKO O.ORCID

Abstract

Introduction. The measurement of relative air humidity plays a crucial role in various aspects of human life, such as climate control systems, medical breath and skin hydration monitoring. Typically, humidity sensors use inorganic materials and petroleum-derived polymers. However, there is a growing trend towards the transition to biodegradable materials, which eliminates the need for waste disposal.Problem Statement. Currently, nanocellulose (NC) has been being explored as a promising material for humidity sensors. However, the influence of the chemical composition and nanoparticle size of NC on the sensor characteristics remains understudied.Purpose. This study aims to investigate the influence of the chemical composition and structure of NC on the parameters of humidity sensors.Materials and Methods. NC has been synthesized from reed stalks and wheat straw bz the oxidation and acid hydrolysis methods. NC-film sensors having a mass within 0.3—3 mg have been fabricated. The static parameters (response, sensitivity, reversibility, and repeatability) and the dynamic parameters (short and long-term stability, response and recovery time) of the sensors have been analyzed.Results. The manufacturing method influences the NC chemical composition, while the origin material affects its structure. The sensors produced by the oxidation method have demonstrated improved sensitivity (2.69 · 106), response (0.2 (%RH)–1), recovery time (60 s) and long-term stability (1.44%) as compared with those made by the hydrolysis method. Additionally, the application of wheat straw NC as origin material has resulted in improved reversibility (5%), repeatability (5% deviation), short-term stability (30% deviation), and response time (1 s) as compared with the reed stalks NC.Conclusions. It has been established that the origin material of nanocellulose influences the reversibility, repeatability, response time, and short-term stability of the sensors. The manufacturing method has effect on the sensitivity, response, recovery time, and long-term stability of the sensors.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3