Geochemical Behavior of Ferric Hydroxide Nanodispersion Under the Influence of Weak Magnetic Fields

Author:

ZABULONOV Yu.L.ORCID,KADOSHNIKOV V.M.ORCID,MELNYCHENKO T.I.ORCID,ZADVERNYUK H.P.ORCID,KUZENKO S.V.ORCID,LYTVYNENKO Yu.V.ORCID

Abstract

The change of geochemical properties of ferric hydroxide nanoparticles under the influence of a weak magnetic field was investigated. Ferric hydroxide nanoparticles formed as a result of the interaction of iron-containing minerals with natural aqueous solutions are of importance for geochemical processes, especially hypergenesis, sedimentation, and soil formation. The hydrolysis of ferric chloride in hot water (t = 70-75°С) was used to obtain ferric hydroxide nanoparticles under laboratory conditions. The nanodispersion (colloidal solution) was exposed to a weak pulsed magnetic field. The spectrophotometric properties of the colloidal solution of ferric hydroxide were determined using an SF-46 spectrophotometer in the wavelength range of 320-610 nm. The size of colloidal particles was calculated by a method based on the theory of Rayleigh light scattering. The size of colloidal particles depended on the exposure duration of a pulsed magnetic field on the colloidal solution. The size of colloidal particles was due to a change in the magnitude of the diffuse ionic atmosphere under the influence of a pulsed magnetic field. The kinetic stability of the colloidal solution was evaluated by the coagulation threshold, which was determined visually by the appearance of the turbidity of ferric hydroxide colloid when adding NaCl solution. The kinetic stability of a colloidal system was determined by the size of colloidal particles. These results can be used to better understand certain hypergenesis, sedimentation, and soil formation processes.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3