The Size and Shape of Diamond Crystals of Different Origin

Author:

KVASNYTSYA V.M.ORCID

Abstract

The size and shape of diamond crystals of different origin are analyzed. Diamonds with a size of less than about 0.5 mm are classified as microcrystals. Diamonds found in meteorites typically show non-faceted anhedral crystals of various sizes. Only the Canyon Diablo iron meteorite has cubic microcrystals of unclear crystallogenesis. Nano, micro- and macro-sized crystals of diamond in meteorites are usually aggregate in nature. The release of diamond polyhedra in meteorites is limited by the too small size of its crystals in chondrites and by its solid-phase transformation from very fine-grained diamond and graphite in ureilites and octahedrites. The size and shape of diamond crystals found in meteorite impact craters are determined by the nature of the source carbon material. The process of solid-phase transformation of graphite or other carbon-bearing materials (e.g., coal, plant remains) to diamond in meteorite craters does not allow euhedral crystal to be formed. At the same time, in the case of diamonds formed from impacts, on the (0001) faces of impact apographitic diamonds, polyhedra of nano-microdiamonds crystallize from the gas phase. These crystals are often form autoepitaxially, because they crystallize in an oriented manner on the lonsdaleite -diamond matrix. Diamonds found in metamorphic rocks, ophiolites and modern volcanites show faceted microcrystals. A wide range of sizes, from 0.1 mm to 10 cm, is characteristic of faceted diamond crystals from kimberlites, lamproites and lamprophyres. Diamond crystals from different mantle rocks acquire a multifaceted shape after reaching certain embryo sizes — the most likely appearance of diamond polyhedra larger than 40-50 nm. Octahedra forms are dominant for natural diamond crystals of different sizes and origin.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Medicine

Reference25 articles.

1. Walter, A.A., Eremenko, G.K., Kvasnitsa, V.N. and Polkanov, Yu.A. (1992), Impact-metamorphogenic minerals of carbon, Nauk. dumka, Kyiv, UA, 172 p. [in Russian].

2. Vdovykin, G.P. (1970), Diamonds in meteorites, Nauka, Moscow, RU, 127 p. [in Russian].

3. Galimov, E.M. and Kaminsky, F.V. (2021), Geochemistry, Vol. 66, No. 1, RU, pp. 3-14 [in Russian]. https://doi.org/10.31857/S0016752521010040

4. Zinchuk, N.N., Koptil, V.I. and Kvasnitsya, V.N. (2003), Mineral. Journ. (Ukraine), Vol. 25, No. 4, UA, pp. 32-47 [in Russian].

5. Kvasnitsa, V.N., Kharkiv, A.D. and Zinchuk, N.N. (1994), The nature of diamond, Nauk. dumka, Kyiv, UA, 208 p. [in Russian].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3