How Laser Physics Brought Optics to the World of Photonic Crystals

Author:

Ilchyshyn I. P.,Tikhonov E. A.

Abstract

A brief review of authors’ research is presented. An emphasis is made on the photon localization in the helical structure of a chiral liquid crystal (CLC), which was first experimentally registered by the authors. An analysis of the spectral and lasing characteristics of distributed feedback (DF) lasers based on natural CLCs (type 1) and on chiral nematics (type 2) led to a conclusion that the model of photonic crystal is suitable to describe the lasing mechanism in type-2 CLC lasers, but not in type-1 ones. This conclusion is evidenced by the absence of lasing bands at the opposite edges of the selective reflection (SR) band; at the same time, the lasing line is located at its center. It is shown that if the SR band of the CLC overlaps the maximum of the laser dye fluorescence band, the lasing line coincides with the SR band center to an error of ±1 nm. If the layer thickness in the CLC lasers of both types does not exceed 50 мm, when a high-quality planar texture is retained and a low generation threshold is achieved, a significant difference between their optical characteristics takes place. Namely, the SR spectrum for a type-1 CLC laser is approximately described by a Lorentzian profile, whereas the contour of the SR spectrum for a type-2 CLC laser has a profile characteristic of the transmittance through multilayer dielectric mirrors. The origins of the differences between the optical and laser characteristics of the CLC lasers of both types have been analyzed from the viewpoint of two lasing models: DF and photonic-crystal ones.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Subject

General Physics and Astronomy

Reference30 articles.

1. V.P. Bykov. Spontaneous emission in a periodic structure. Zh. 'Eksp. Teor. Fiz. 62, 505 (1972) (in Russian).

2. R. Dreher, H. Schomburg. Prolongation of fluorescence decay time by structural changes of the environment of the emitting molecule. Chem. Phys. Lett. 25, 527 (1974).

3. E. Yablonovitch. Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).

4. I.P. Ilchishin,E.A.Tikhonov,V.G.Tishchenko,M.T. Shpak. Generation of a tunable radiation by impurity cholesteric liquid crystals. JETP Lett. 32, 27 (1980).

5. I.P. Ilchishin, A.G. Kleopov, E.A. Tikhonov, M.T. Shpak. Stimulated tunable radiation in an impurity cholesteric liquid crystal. Bull. Acad. Sci. USSR Phys. Ser. 45, 13 (1981).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3