Abstract
Modern approaches to finding image elements are analyzed. An algorithm for searching micro-objects in histological and cytological images using a database is developed. A tiered-parallel form of parallelization of the process of micro-object pattern search is designed. Micro-object pattern search software is implemented. The obtained result show that the operating time of the software module with parallelization speeds up the processing on average by 20% for cytological images
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)
Reference15 articles.
1. 1. Berezky O.M. Methods, algorithms and software tools for the processing of biomedical images / Berezky O.M., Bat'ko Yu.M., Berezka K.M., Verbovy S.O., Datsko T.V., Dubchak L.O., Ignat'ev I.V., Melnyk G.M., Nikoluk V.D., Pitsun O.Y. - Ternopil: Economic Thought, TNEU, 2017. - 330 p.
2. 2. Zarella M. Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology / M.D. Zarella, Garcia F.,Breen D. // ICBBT '17 Proceedings of the 9th International Conference on Bioinformatics and Biomedical Technology. - 2017. - pp. 11-15. doi: 10.1145/3093293.3093307
3. 3. Zarella, M. An optimized color transformation for the analysis of digital images of hematoxylin / M. Zarella, D.Breen, A. Plagov, F. Garcia // Journal of Pathology Informatics, 6(1): 33, 2015.
4. 4. D ́ıaz G. Automatic Clump Splitting for Cell Quantification in Microscopical Images / G. Dıaz, F. Gonzalez, E. Romero // Springer-Verlag Berlin Heidelberg, CIARP 2007, LNCS 4756, pp. 763-772, 2007.
5. 5. Lotfollahi M. Three-dimensional GPU-accelerated active contours for automated localization of cells inlarge images / M. Lotfollahi, S. Berisha, L. Saadatifard, L. Montier, J. Žiburkus, D. Mayerich // PLoS ONE 14(6). https://doi.org/10.1371/journal.pone.0215843