Finite-element model of a vertical tank on a rigid foundation

Author:

,Kucherenko O. Ye.ORCID

Abstract

This study addresses the problem of finite element modeling of a 20,000 m3 vertical steel tank subjected to static loads. The structure includes a cylindrical wall of total height 17,880 mm and diameter 39,900 mm. The shell thicknesses of the cylindrical wall are determined according to strength and buckling design standards. The geometric model is axisymmetric. The analysis involves the calculation of the stress and strain fields of the cylindrical wall and the contact zone between the flat bottom and the rigid foundation under various combinations of external loads, namely, excessive and hydrostatic pressures. The ANSYS Mechanical software is used for finite element analysis. Three-dimensional SOLID186 and SHELL281 elements are used for axisymmetric modeling of the shell structure in a three-dimensional formulation. To simulate the contact zone, CONTA174 and TARGE170 finite elements are used to model the moving contact surface of the bottom and the fixed surface of the rigid foundation, respectively. The model is verified by comparing the radial displacements calculated numerically and analytically. The discrepancy does not exceed 4%, thus evidencing the adequacy of the finite element model. The contact zone is analyzed for non-standard service conditions, such an excessive internal pressure in the tank (2.5 and 3 kPa compared to 2 kPa under normal conditions). The unilaterally constrained "bottom–foundation" contact zone model allows the bottom to detach from the foundation, thus leading to contact opening. A full detachment occurs under a certain combination of the excessive and the hydrostatic pressure. For certain liquid levels in the tank, the gap decreases, which may be due to a reduced effect of the excessive pressure. This is accompanied by the development of internal detachment caused by the increasing moment from the hydrostatic pressure. The internal detachment increases the bending moment at the wall–bottom junction, which, under certain conditions, may cause plastic deformations followed by the development of an emergency state.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Reference10 articles.

1. 1. Timoshenko S., Gere J. Theory of Elastic Stability. New York: McGraw-Hill Book Company, Inc., 1961. 541 pp.

2. 2. Priestley M. J. N. Analysis and design of circular prestressed concrete storage tanks. PCI Journal. 1985. V. 30. Iss. 4. Pp. 64-85.

3. 3. Hudramovych V. S., Demenkov A. F., Egorov E. A., Repryntsev A. V. On the effect of the manufacturing technology on the load-bearing capacity of steel tanks. Problemy Prochnosti. 2006. No. 4. Pp. 125-131. (in Russian).

4. 4. Demenkov A. F., Repryntsev A. V., Samarskaia E. V. Effect of technological and operational defects on the strength of vertical oil tanks. Visnyk Dnipropetrovskoho Universytetu. 2006. No. 2/2. Iss. 10. Pp. 51 - 55. (in Russian).

5. 5. Tarasenko A. A., Chepur P. V., Chirkov S. V., Tarasenko D. A. Steel storage oil tank simulated using Ansys Workbench 14.5. Fundamental Research. 2013. No. 10. Pp. 3404-3408.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3