A laboratory magnetometer for express measurements of magnetic hysteresis loops

Author:

Sova K., ,Vakula A.,Polevoy S.,Tarapov S., , , ,

Abstract

Subject and Purpose. The development of technologies for synthesis of nanoscale magnetic materials requires new techniques for measuring magnetic properties of nanoscale magnetic materials in such a way as to provide express post-synthesis measurements of magnetic properties and exclude, in doing so, any mechanical displacements of measured specimens. Despite the fact that numerous techniques exist for studying magnetic properties of materials, the development of such magnetic nanomaterials as magnetic nanoparticles faces the need in novel measuring approaches based on standard procedures. Novel express techniques are called to gain information about how magnetic properties of magnetic materials vary over time and respond to such factors as temperature, storage conditions, stabilizing agents, exposure to an external magnetic field. Method and Methodology. In this work, magnetic hysteresis loops are registered using a newly developed technique based on the method of small disturbances (by an external magnetic field) and combining standard constructions of hysterometers and vibrating-sample magnetometers. Results. Magnetic hysteresis loops of a bulky ferrite (brand 1SCh4) sample and a 40 μm thick YIG film have been registered using the presented technique and compared with the results obtained by the well-known technique for measuring magnetic hysteresis loops. They are in good agreement with a margin error as low as 10%, which can be further improved by means of more precise equipment. With the presented technique, the magnetization and the coercive force of Fe0.5Co0.5Fe2O4 nanoparticles not examined yet have been determined. Conclusion. The developed technique makes it possible to study magnetic materials of various compositions including nanoscale magnets.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3