Abstract
The study proposes an algorithm for calculating of appreciable permeability coefficients for multicellular structures in a cryoprotectant medium using physical and mathematical model of mass transfer. The values of surface-area-to-volume ratio for L929 cells at different temperatures were determined and the thermal expansion coefficient of the surface area of cell membranes was calculated (β = 2.7 × 10-3 /°C). The osmotically inactive volume for L929 cells and their spheroids was determined. Filtration and permeability coefficients to DMSO for L929 cells and in toto spheroids were found from the dynamic curves of relative volume change. The calculated parameters are the highest for individual cells and significantly (p <0.05) decrease for cells in the spheroids with increasing depth of their location, this reduction may be stipulated by a decrease in the available surface of cells in the spheroids for the penetration of extracellular substances. Obtained in this research permeability characteristics of spheroids can be used to develop optimal cryopreservation regimens for them.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Subject
Medicine (miscellaneous),Biophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献