EFFECT OF BODY VIBRATION ON STRUCTURAL ORGANISATION OF TIBIA NANOCOMPOSITES IN RATS WITH GLUCOCORTICOID-INDUCED OSTEOPOROSIS

Author:

Kostyshyn N.M., ,Gzhegotskyi M.R.,Kostyshyn L.P.,Kulyk Yu.O., , ,

Abstract

The aim of the study was to evaluate the effect of nonphysiological whole body vibration (0,3g) on the bone structure and metabolism in rats treated with methylprednisolone (3 mg/ kg/day every other day, 24 weeks). Amount of crystalline component and collagen in the bones was determined by X-ray diffraction method, and the level of calcium by atomic adsorption spectroscopy. Bone metabolism was assessed by determining the concentration of markers - osteocalcinandtartrate-resistant acid phosphatase 5b. Methylprednisolone reduced the content of the mineral component in the tibia (–16.8%) in I group compared with the control. This significantly accelerated the process of bone metabolism, as evidenced by the increased level of bone remodeling markers. It should be noted that the total nonphysiological whole body vibration did not allow a decrease in the mineral component of the bone until 16 weeks of the experiment compared with I group, although these values were lower than the control group (–28.3%). We suggests that mechanical high-frequency low-intensity whole body vibration can inhibit the negative effects of glucocorticoids on bone structure.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Subject

Physiology

Reference25 articles.

1. Glucocorticoidinduced osteoporosis in growing rats;Lin;Calcif Tissue Int,2014

2. The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis;Musumeci;J Bone Miner Metab,2013

3. 3. Golovach IY. Clinical Hospital «Feofaniya» of State Administration of Affairs, Kyiv, Ukraine GlucocorticoidInduced Osteoporosis: Generation of Doctrine in Ukraine and Current State of Problem. Pain, Joints, Spine. 2011;3: 47-53.

4. 4. Pichler K, Loreto C, Leonardi R, Reuber T, Weinber AM, Musumeci G. RANKL is down regulated in bone cells by physical activity (treadmill and vibration stimulation training) in rat with glucocorticoid-induced osteoporosis. 2013;28:1185-96.

5. 5. Nakajima K, MatsunagaS, Morioka T, Nakano T, Abe S, Furuya Y, Yajima Y. Effects of unloading by tail suspension on biological apatite crystallite alignment in mouse femur. Dental Materials J. 2020;2019-187.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3