1. 1. Kulyk, M.M. (2014). Features of input data usage in deterministic and stochastic life-cycle models. The Problems of General Energy, 2(37), 5-12. URL: https://systemre.org/index.php/journal/article/view/516 (Last accessed: 12.04.2024) [in Ukrainian].
2. 2. Rosen, V.P., & Demchik, Y.M. (2016). Comparative analysis of methods of forecasting electricity consumption of production systems. Journal of Kryvyi Rih National University. Coll. Science works, 42, 41-47. URL: http://visnykknu.com.ua/wp-content/uploads/file/42/11.pdf (Last accessed: 12.04.2024) [in Ukrainian].
3. 3. Idowu, S., Saguna, S., Ahlund, Ch., Schelen, O. (2014, November 03-06). Forecasting Heat Load for Smart District Heating Systems: A Machine Learning Approach. 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm). https://doi.org/10.1109/SmartGridComm.2014.7007705
4. 4. Li, Ch. (2016). Models of forecasting of electricity consumption in China for the long term. Odesa National University Herald. Economy, 21, 5(47), 26-32. URL: http://visnyk-onu.od.ua/journal/2016_21_5/06.pdf (Last accessed: 10.01.2023) [in Ukrainian].
5. 5. Bansal, A., Rompikuntla, S. K., Gopinadhan, J., Kaur, A., & Kazi, Z. A. (2015). Energy Consumption Forecasting for Smart Meters. Bangalore, India. https://doi.org/10.48550/arXiv.1512.05979