Overview of carbon capture, utilisation and storage technologies to ensure low-carbon development of energy systems

Author:

Shcherbyna YevhenORCID, ,Novoseltsev OleksandrORCID,Evtukhova TatianaORCID, ,

Abstract

Carbon dioxide CO2 is a component of air that is responsible for the growing global warning and greenhouse gases emissions. The energy sector is one of the main sources of CO2 emissions in the world and especially in Ukraine. Carbon capture, utilization and storage (CCUS) is a group of technologies that play a significant role along with renewable energy sources, bioenergy and hydrogen to reduce CO2 emissions and to achieve international climate goals. Nowadays there are thirty-five commercial CCUS facilities under operation around the world with a CO2 capture capacity up to 45 million tons annually. Tougher climate targets and increased investment provide new incentives for CCUS technologies to be applied more widely. CCUS are applications in which CO2 is captured from anthropogenic sources (power generation and industrial processes) and stored in deep geological formations without entering atmosphere or used in various products using technologies without chemical modification or with conversion. The article discusses the use of various technologies of CO2 capture (post-combustion capture, pre-combustion capture and oxy-combustion capture), CO2 separation methods and their application in the global energy transition to reduce the carbon capacity of energy systems. Technical and economic indicators of CO2 capture at different efficiencies for coal and gas power plants are given. Technologies of transportation and storage of captured carbon dioxide and their economic indicators are considered. The directions for the alternative uses of captured CO2, among which the main ones are the production of synthetic fuels, various chemicals and building materials, are also presented and described in the paper. The possibility of utilization captured СО2 in the production of synthetic fuel in combination with Power-to-Gas technologies was studied. Keywords: greenhouse gases emissions, fossil fuels, СО2 capture technologies, capture efficiency, synthetic fuel

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Reference31 articles.

1. IEA (2020), CCUS in Clean Energy Transitions, IEA, Paris. URL: https://www.iea.org/reports/ccus-in-clean-energy-transitions (accessed on 21 October 2022)

2. Energy Technology Perspectives 2020, Special Report on Carbon Capture Utilisation and Storage CCUS in Clean Energy Transitions, IEA, Paris, France, 2020. URL: https://iea.blob.core.windows.net/assets/7f8aed40-89af-4348-be19-c8a67df0b9ea/Energy_Technology_Perspectives_2020_PDF.pdf (accessed on 4 October 2022)

3. IEA (2022), Carbon Capture, Utilisation and Storage, IEA, Paris. URL: https://www.iea.org/reports/carbon-capture-utilisation-and-storage-2 (accessed on 28 October 2022)

4. Praetorius, B.; Schumacher, K. Greenhouse gas mitigation in a carbon constrained world: The role of carbon capture and storage. Energy Policy 2009, 37, 5081-5093. https://doi.org/10.1016/j.enpol.2009.07.018

5. Sanpasertparnich, T.; Idem, R.; Bolea, I.; deMontigny, D.; Tontiwachwuthikul, P. Integration of post-combustion capture and storage into a pulverized coal-fired power plant. Int. J. Greenh. Gas Control 2010, 4, 499-510. https://doi.org/10.1016/j.ijggc.2009.12.005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3