Adsorption of various compounds onto nanooxides unmodified and differently pretreated

Author:

Gun'ko V. M., ,Matkovsky O. K.,

Abstract

Features of interfacial adsorbate/adsorbent phenomena depend on several factors: particulate morphology, texture, and structure of adsorbents, molecular weight, shape, and polarity of adsorbates; as well as prehistory of adsorbents pretreated under different conditions. All these factors could affect the efficiency of practical applications of not only adsorbents but also polymer fillers, carriers, catalysts, etc. Interactions of nonpolar nitrogen, hexane, benzene, weakly polar acetonitrile, and polar diethylamine, triethylamine, and water with individual (silica, alumina), binary (silica/alumina (SA)) and ternary (alumina/silica/titania, AST) nanooxides were studied using experimental and theoretical methods to elucidate the influence of the morphological and textural characteristics and surface composition of the materials on the adsorption phenomena. The specific surface area SX / ratio (X is an adsorbate) changes from 0.7 for hexane adsorbed onto amorphous silica/alumina SA8 with 8 wt. % Al2O3 (degassed at 200 °C) to 1.9 for acetonitrile adsorbed onto pure fumed alumina (treated at 900 °C). These changes are relatively large because of variations in orientation, lateral interactions, and adsorption compressing of organic molecules interacting with surfaces characterized by certain set and amounts of various active sites, as well as due to changes in the accessibility of pore surface for probe molecules of different sizes. Larger SX / > 1 values are observed for complex fumed oxides with larger primary nanoparticles, greater surface roughness, hydrophilicity, and Brønsted and Lewis acidity of a surface. Both polar and nonpolar adsorbates can change the morphology and texture of aggregates of oxide nanoparticles, e.g., swelling of structures, compacted during various pretreatments, upon the adsorption of liquids. The studied effects should be considered upon practical applications of adsorbents, especially “soft” fumed oxides.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Materials Chemistry,Colloid and Surface Chemistry,Physical and Theoretical Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Ceramics and Composites

Reference92 articles.

1. 1. Ullmann's Encyclopedia of Industrial Chemistry. (Weinheim: Wiley-VCH, 2008).

2. 2. Hastie J.W. (editor). Materials Chemistry at High Temperatures. V. 1, Characterization. V. 2, Processing and Performance. (NJ Clifton: Humana Press, 1990).

3. 3. Büchel K.H., Moretto H.-H., Woditsch P. Industrial inorganic chemistry. (Weinheim: Wiley-VCH Verlag GmbH, 2000).

4. 4. Basic characteristics of Aerosil fumed silica (4th ed.). Tech. Bull. Fine Particles 11. (Hanau: Evonik Industries, 2014).

5. 5. Cabot Corporation. http://www.cabotcorp.com/solutions/products-plus/fumed-metal-oxides/. CAB-O-SIL® fumed silicas for pharmaceutical and nutraceutical applications.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3