Method of “cleaning” the surface of responsive elements of silicon p-i-n photodiodes from dislocations

Author:

Kukurudziak M. S.,

Abstract

Investigating the formation of inversion layers (IL) at the Si-SiO2 interface in the manufacturing technology of silicon photodetectors, some dynamics of dislocations after isothermal annealing were revealed, which were absent in samples without inversion. After selective etching of samples with inversion layers, localization of dislocations on the periphery of responsive elements (RE) with accumulation of guard rings (GR) or other elements of n+-type topology outside the RE was observed. This testified to the movement of dislocations on the surface of the Si-SiO2 structures with IL in the direction of the periphery of the crystal during isothermal annealing, which contributed to a significant decrease in the density of structural defects in RE. The described phenomenon can be used to obtain highly doped defect-free silicon structures. Since the presence of dislocations or other violations of the crystal lattice negatively affect the parameters of the products. In the case of using the described phenomenon as a technological method of “cleaning” the surface of silicon structures, there is a need for controlled formation of IL. One of the methods of forming inversion layers can be thermal oxidation in hydrochloric acid vapors according to the principle of dry-wet-dry oxidation (for p-type silicon). Another method that does not require additional materials is the annealing of Si-SiO2 structures at a temperature of 900–950 Celsium degrees in a nitrogen atmosphere for ≥ 240 minutes. Inversion channels, in this case, will be formed due to the redistribution and diffusion of metal impurities in the oxide (which were introduced during previous thermal operations) to the Si-SiO2 interface. In the described case, these structural defects after annealing were localized in the GR, which is also an active element of the phododiodes, as it limits the dark current of the RE, accordingly, the dark current of the GR should also be low. To be able to implement this method, it is necessary to create passive n+-regions on the periphery of the crystals, limited by oxide, which will be the locations of defects after annealing. It can be both separate areas of arbitrary shape and a concentric ring outside the GR. Elements that will be the locations of defects on the periphery can be cut off at the stage of separating the substrates into crystals. After annealing, it is necessary to remove the IL and form an anti-reflective coating by any known method, since the presence of inversion channels contributes to the growth of dark currents. When examining the morphology of defect localization areas after annealing under high-magnification microscopes and with the help of an atomic force microscope, the formation of hexagonal and round defects, which are partial marginal Frank dislocation loops, was observed. The mechanism of dislocation movement described in this article has not been thoroughly studied by us and requires additional research, but it may be related to Cottrell atmospheres and their interaction with IL

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Materials Chemistry,Colloid and Surface Chemistry,Physical and Theoretical Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3