Author:
Markitan O. V., ,Vlasova N. N.,Sheludko Y. V., ,
Abstract
Сreation of new therapeutic materials based on nucleic acids encourages the combination of the latter with materials capable of adsorbing them. One of the most promising materials for such purposes is nanocrystalline titanium dioxide due to its low toxicity, stability of its physical and chemical parameters, and high biocompatibility. Accordingly, understanding the nature of the interaction of the surface of titanium oxide with biologically active substances is a very important issue. It is also always a relevant question whether the biopolymer immobilized on the surface of a solid remains capable of serving as a reservoir for drug delivery or a tool for the treatment of a particular disease. The aim of the work was to investigate the interaction of the biologically active substance rivanol with the surface of DNA-containing titanium dioxide. It has been found that prior adsorption of deoxyribonucleic acid on the surface of titanium dioxide does not prevent its interaction with rivanol, which was confirmed by the methods of electron spectroscopy, atomic force and scanning electron microscopy. The mode of interaction of rivanol with deoxyribonucleic acid depends on the ratio of their concentrations and can be either intercalated or semi-intercalated, and electrostatic. Based on the calculated thermodynamic characteristics, the process of interaction of deoxyribonucleic acid adsorbed on the surface of a solid carrier is arbitrary and occurs by an ion exchange mechanism. These hybrid organo-mineral sorbents can serve as model structures for research in biotechnological fields, be used for the development of new methods of drug or gene delivery, reservoir systems at a molecular level, and serve as biocompatible carriers. The creation of organo-mineral sorbents, which combine nucleic acids and metal oxides, contributes to the stabilization of such systems and expands the scope of their possible application in medicine and biotechnology, increasing their target specificity.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Subject
Materials Chemistry,Colloid and Surface Chemistry,Physical and Theoretical Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Ceramics and Composites
Reference71 articles.
1. 1. Paunesku T., Rajh T. Biology of TiO2-oligonucleotide nanocomposites. Nat. Mater. 2003. 2(5): 343.
2. 2. Suzuki H., Amano T., Toyooka T. Preparation of DNA-adsorbed TiO2 particles with high performance for purification of chemical pollutants. Environ. Sci. Technol. 2008. 42(21): 8076.
3. 3. Abu-Salah Kh.M., Ansari A.A., Alrokayan S.A. DNA-Based Applications in Nanobiotechnology. J. Biomed. Biotechnol. 2010. 2010: 715295.
4. 4. Sun Y., Kiang C-H. DNA-based artificial nanostructures: Fabrication, properties, and applications. In: Handbook of Nanostructured Biomaterials and Their Applications in Nanobiotechnology. V. 1-2. (American Scientific Publishers, 2005).
5. 5. Pautler R., Kelly E.Y., Huang P-J. J., Cao J., Liu B., Liu J. Attaching DNA to nanoceria: regulating oxidase activity and fluorescence quenching. ACS Appl. Mater. Interfaces. 2013. 5(15): 6820.