Author:
Kolomiiets V. O., ,Palchik O. V.,Dzyazko Yu. S.,Yatsenko T. V.,Ponomaryova L. M.,Ogenko V. M., , , , ,
Abstract
Oil and oil products enters surface waters as a result of man-made disasters, caused, in particular, by military operations. In order to prevent ecological catastrophe, it is necessary to remove hydrocarbons from water surface. The paper is devoted to the development of materials for the extraction of non-polar liquids from aqueous media. Magnetic sorbents based on non-carbonized biopolymers (both plant cellulose and keratin) are proposed. Biopolymer matrices of different morphology on the level of fiber bundles were used for the composite preparation. Dependent on origin, the matrices are characterized by different morphologies at the level of fiber bundles: they are straight (cellulose obtained from wood and corn cobs), helical (cellulose of tea leaves or scaly (keratin from animal wool). Magnetite particles were inserted into biopolymer matrices after the removal of non-cellulose and non-keratin inclusions from them. The samples were investigated with SEM and FTIR techniques, magnetite was identified with XRD analysis. The most homogeneous distribution of magnetic particles, a size of which is less than 1 mm, was found for the matrix obtained from corn cobs. This composite contained the least amount of iron (0.24 mass. %), namely this sample demonstrates the best flotation. The sorbent based on cellulose from tea leaves contained 71% of iron: the particles sink almost completely. The capacity towards non-polar liquids was estimated as follows (g g–1): 1.6–8.6 (vegetable oil), 10.5–16.4 (crude oil), 9.8–14.5 (kerosene). After the removal of crude oil from water surface, no film of this liquid was visually observed. The value of chemical oxygen demand was » 0.2 mgO2 dm–3, this is less than the demand for drinking water. Moreover, the sorbent can be easy removed from water surface with magnet. As found, the sorbents can be used for removal of toxic metal ions from water. As found, magnetic particles improves sorption of Pb2+ ions but decrease Cd2+ sorption. Thus, the sorbents with small content of inorganic modifier can be used for the removal of oil and oil products from water surface. The sorbents, which demonstrate bad flotation, can be used for the recovery of inorganic ions. The advantages of biopolymer-based sorbents over known material is a simple preparation procedure that involves cheap and available feedstock. Moreover, the sorbents can be easy separated from aqueous phase with magnet.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Subject
Materials Chemistry,Colloid and Surface Chemistry,Physical and Theoretical Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Ceramics and Composites