Sorbents based on biopolymers of different origin containing magnetite for removal of oil products and toxic ions from water

Author:

Kolomiiets V. O., ,Palchik O. V.,Dzyazko Yu. S.,Yatsenko T. V.,Ponomaryova L. M.,Ogenko V. M., , , , ,

Abstract

Oil and oil products enters surface waters as a result of man-made disasters, caused, in particular, by military operations. In order to prevent ecological catastrophe, it is necessary to remove hydrocarbons from water surface. The paper is devoted to the development of materials for the extraction of non-polar liquids from aqueous media. Magnetic sorbents based on non-carbonized biopolymers (both plant cellulose and keratin) are proposed. Biopolymer matrices of different morphology on the level of fiber bundles were used for the composite preparation. Dependent on origin, the matrices are characterized by different morphologies at the level of fiber bundles: they are straight (cellulose obtained from wood and corn cobs), helical (cellulose of tea leaves or scaly (keratin from animal wool). Magnetite particles were inserted into biopolymer matrices after the removal of non-cellulose and non-keratin inclusions from them. The samples were investigated with SEM and FTIR techniques, magnetite was identified with XRD analysis. The most homogeneous distribution of magnetic particles, a size of which is less than 1 mm, was found for the matrix obtained from corn cobs. This composite contained the least amount of iron (0.24 mass. %), namely this sample demonstrates the best flotation. The sorbent based on cellulose from tea leaves contained 71% of iron: the particles sink almost completely. The capacity towards non-polar liquids was estimated as follows (g g–1): 1.6–8.6 (vegetable oil), 10.5–16.4 (crude oil), 9.8–14.5 (kerosene). After the removal of crude oil from water surface, no film of this liquid was visually observed. The value of chemical oxygen demand was » 0.2 mgO2 dm–3, this is less than the demand for drinking water. Moreover, the sorbent can be easy removed from water surface with magnet. As found, the sorbents can be used for removal of toxic metal ions from water. As found, magnetic particles improves sorption of Pb2+ ions but decrease Cd2+ sorption. Thus, the sorbents with small content of inorganic modifier can be used for the removal of oil and oil products from water surface. The sorbents, which demonstrate bad flotation, can be used for the recovery of inorganic ions. The advantages of biopolymer-based sorbents over known material is a simple preparation procedure that involves cheap and available feedstock. Moreover, the sorbents can be easy separated from aqueous phase with magnet.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Materials Chemistry,Colloid and Surface Chemistry,Physical and Theoretical Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3