Synthesis and electrophysical properties of nanostructured composites NіCо/BaTiO3 and NiCo/TiO2

Author:

Makhno S. M., ,Lisova O. M.,Gunya G. M.,Gorbyk P. P.,Kartel M. T., , , ,

Abstract

Nanocomposites containing components with semiconductor, ferroelectric, and ferromagnetic properties have attracted considerable attention of specialists due to the range of possible applications, including catalysis and electrocatalysis, electrode materials for solar and fuel cells, capacitors, electrical and biosensors, anti-corrosion coatings and much more. In recent years, both fundamental and applied interest in this direction of research is due to the possibility of creating a new type of controlled microwave devices and tools. The aim of the work is to develop methods for the synthesis of nanostructured NiCo composites based on BaTiO3 and TiO2, as well as to find the differences and regularities of their physicochemical properties. Two series of samples with different content of NiCo nanoparticles based on titanium oxide (TiO2) and barium titanate (BaTiO3) were obtained. NiCo particles were obtained by the method of chemical precipitation of nickel and cobalt carbonates in equal parts from a hydrazine hydrate solution at the temperature of 350 K. The results of X-ray phase analysis indicate the chemical purity of the obtained samples. The values of ε′, ε″ at a frequency of 9 GHz for the NiCo/BaTiO3 system are twice as high compared to NiCo/TiO2 for the corresponding values of the NiCo content, which is due to the higher values of ε′, ε″ of the initial barium titanate. Electrical conductivity of NiCo/BaTiO3 system changes by six orders of magnitude, which indicates the formation of a continuous percolation cluster of metal particles on the surface of dielectric BaTiO3 particles. The composites are heat-resistant up to 630K, as shown by the method of thermogravimetry and pronounced magnetic properties. The program for calculating frequency dependences of reflection and absorption coefficients in a complex form has been developed. EMF absorption for composites from the radiation frequency and the position of the minima of these characteristics, which agree satisfactorily with the experiment. The obtained composites can be promising components for obtaining composite systems and paints for protection against electromagnetic radiation.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Materials Chemistry,Colloid and Surface Chemistry,Physical and Theoretical Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3