Influence of the Nernst diffusion layer thickness on surface concentration in a model electrochemical process with a preceding chemical reaction

Author:

Gichan O. I.,

Abstract

The influence of the Nernst diffusion layer thickness on the surface concentrations of electroactive and electroinactive species in a model electrochemical process with a preceding homogeneous first-order chemical reaction under application of a small amplitude alternating current has been investigated. A case of equal diffusion coefficients of species taking part in the preceding chemical reaction in a thin layer attached to a planar electrode is considered. It has been shown that, at low frequencies of an applied alternating current, the surface concentrations of electroactive and electroinactive species increase with increasing the Nernst diffusion layer thickness. At high frequencies, the surface concentrations of both species do not depend on this parameter. However, there is a range of frequencies where the surface concentrations of species can decrease with increasing the Nernst diffusion layer thickness. This range of frequencies can be influenced by a value of the Nernst diffusion layer thickness, the rate constants of chemical reaction, and the diffusion coefficient of species. There exists a phase shift between an alternating current and the surface concentrations of electroactive and electroinactive species that change under application of this current. It is a function of the Nernst diffusion layer thickness, the oscillation diffusion layer thickness, and the reaction layer thickness. In the case of electroactive species, the phase angle can take only a positive value. At low frequencies, it tends to π/2, whereas at high frequencies it decreases to π/4. For the case of electroinactive species, the phase angle can be positive, negative, and equal to zero depending on the value of the Nernst diffusion layer thickness, the rate constants of chemical reaction, and the diffusion coefficient of species. It approaches –π/2 at low frequencies, and at high frequencies it tends to π/4. The both phase angles can have the maxima and the minima. Their values are strongly dependent on the Nernst diffusion layer thickness, the diffusion coefficient of species, the rate constants of chemical reaction.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Materials Chemistry,Colloid and Surface Chemistry,Physical and Theoretical Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3