The regulation of mitochondrial NO synthase activity under nitroglycerine application in rat heart and liver mitochondria

Author:

Akopova O.V., ,Korkach Yu. P.,Sagach V. F., ,

Abstract

Nitroglycerine (NG) affords cardioprotection via NO formation, but the impact of NG application on reactive nitrogen species (RNS) metabolism remains little studied yet. Mitochondrial NO synthase (mtNOS) is an important endogenous source of RNS. Our aim was to study the effect of NG application on mtNOS activity and RNS production in rat heart and liver mitochondria. Different regulation of mtNOS activity in the heart and liver under NG treatment was found. While in heart mitochondria it increased dose-dependently, in liver mitochondria only moderate elevation and bell-shaped dose dependence of mtNOS activity on NG was observed. Nitrite and nitrate, which are the end products of L-arginine transformation by NOS, showed similar dose dependence on NG. To find an explanation for the observed dependences, we studied the effects of NG administration on the activity of arginase which competes with NOS for physiological substrate, Larginine. A strong reciprocal dependence between mtNOS and arginase activities was found. As we observed, the arginase activity increased under NG application. However, while in heart mitochondria high mtNOS activity agreed with moderate arginase activation, in liver mitochondria high arginase activity coincided with suppression of mtNOS activity at high doses of NG. Low arginase and high mtNOS activities observed in heart mitochondria were consistent with high NO2 − and NO3 − production and low hydroperoxide (H2O2) formation, whereas high arginase activity in liver mitochondria was accompanied by the reduction of NO2− /NO3− formation and simultaneous elevation of H2O2 production. A linear correlation between the arginase activity and hydroperoxide formation was found. We came to the conclusion that under NG administration arginase activation resulted in reciprocal regulation of RNS and ROS production in mitochondria, dependent on the proportion of mtNOS to arginase activity. Suppression of RNS metabolism could be the cause of ROS overproduction caused by high arginase and low mtNOS activity.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Physiology

Reference23 articles.

1. 1. Ignarro LJ, Napoli C, Loscalzo J. Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide. Circ. Res. 2002;90(1):21-8.

2. reperfusion injury and cardioprotection;Andreadou;J Cell Mol Med,2020

3. nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy;Varga;Biochim Biophys Acta,2015

4. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide;Radi;Arch Biochem Biophys,1991

5. 5. Reutov VP, Sorokina EG, Ohotin VE, Kositsyn NS. Cyclic transformations of nitric oxide in the organism of mammals. M: Nauka. 1998. [in Russian].

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3