Bioinformation Systems with Detectors and Signal Coding Capabilities

Author:

Klyuchko OlenaORCID,Beletsky AnatoliyORCID,Gonchar OlgaORCID,Melezhyk OlgaORCID

Abstract

Introduction. The integration of computer technologies into various fields of science allows the development of new methodologies, hybrid information systems with advanced capabilities, such as EcoIS bioinformation system for monitoring the environment with the use of biological data detectors.Problem Statement. The development of innovation bioinformation systems with biological data detectors is a very important task, as they have numerous advantages: allow rapid diagnostics and testing of chemicals in thefirst moments of their action, may be incorporated easily into electronic registration systems, may serve as elementary analytical units with data coding capabilities, etc.Purpose. The purpose of this research is to make a comprehensive analysis of different types of biological data detectors to develop a physical model of a biosensor capable of encoding signals and a bioinformation system with such detectors.Materials and Methods. The comparative analysis of information systems with functions of ecomonitoring and different types of biosensors have been used; the data are taken from electrophysiological experiments on registration of chemosensitive transmembrane electric currents in voltage clamp and patch clamp modes.Results. The physical model of biosensor has been developed and tested. The integration of the developed biosensors into the electronic bioinformation system by the example of EcoIS authors’ system has been demonstrated. Neuron-like biosensor has been considered an abstraction in the unity of its functions: signal receiver — filter — analyzer — encoder/decoder, where the input information is obtained in the form of chemical structures or electrical signals, after the conversion (recoding) of information it is registered as electrical signals with changed characteristics. The prospects for developing the cutting-edge methods for information protection in systems with biosensors have been shown. Conclusions. This development may be used for creating a bioinformation system for environmental moni toring with integrated biosensor system and data protection based on the principles and achievements of contemporary biophysics.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Law,Management of Technology and Innovation,Information Systems and Management,Computer Science Applications,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3