DETECTION OF TERNARY COMPLEX OF FIBRIN DESAB WITH D-DIMER AND D-FRAGMENT OF FIBRIN

Author:

Hrabovskyi O.,

Abstract

The aim of this work is to study the intermolecular interactions of fibrin with D-domain-containing fragments of fibrin(ogen): D-dimer and D-fragment. Materials and methods. Human fibrinogen was obtained from the human blood plasma by salt extraction using 16 % Na2SO4. The content of protein coagulated by thrombin – 96-98%. Analytical size-exclusion chromatography for the detection of molecular complexes was performed on the Sepharose 6B column (30 x 0.5 cm). Components of the analyzed mixture (0.8 ml) were separated by standard chromatography protocol: speed of elution – 0.5 ml/min; collected samples volume – 0.5 ml. Optical density of collected samples was measured by spectrophotometer POP (Optizen, Daejeon, Korea). Composition of each sample was analyzed by SDS-PAGE. Relative amounts of studied compounds in samples were analyzed using densitometry of scanned electropherograms with Totallab TL100 software. Molecular modeling of complexes formed by fibrin desAB and its fragments were performed using UCSF Chimera 1.16 on the basis on earlier developed protofibril structure. The structure of the D-region (PDB ID:1LTJ) was prepared in the same in-protein molecular docking was performed using HDOCK web server. Results. To investigate the complex formation between fibrin desAB. The appearance of D- and DD-fragments in the elution zone of 5.5 mL, which does not overlap with the elution zone of individual fragments (7.5-9.5 mL), was detected, indicating the formation of a ternary complex. Densitometry of electropherograms using TotalLab TL-100 demonstrated that the average densities of pixels in bands of fibrin desAB, D-dimer and D-fragment were equal. It means that the ternary complex of fibrin desAB with D-dimer and D-fragment was composed in the approximate ratio of fibrin desAB, D-dimer and D-fragment 1:1:1. Molecular docking in the HDOCK software was used to establish the spatial arrangement of the D-fragment in relation to the fibrin desAB molecule bound to the D-dimer. Conclusions. We obtained and characterized the ternary complex of fibrin desAB, D-dimer and D-fragment by size-exclusion chromatography followed by SDS-PAGE. Further study of the structure and properties of this complex may clarify certain issues related to fibrin polymerization, namely the process of protofibril formation and their spatial branching.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference23 articles.

1. ..1. Weisel J. W., Litvinov R. I. Mechanisms of fibrin polymerization and clinical implications. Blood.

2. 2013; 121(10): 1712-1719. https://doi.org/10.1182/blood-2012-09-306639

3. 2. Riedel T., Suttnar J., Brynda E., Houska M., Medved L., Dyr J.E. Fibrinopeptides A and B release

4. in the process of surface fibrin formation. Blood. 2011, 3;117(5):1700-6. https://doi.org/10.1182/

5. blood-2010-08-300301.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3