THE ACQUISITION OF RESISTANCE IN HUMAN NON-SMALL LUNG ADENOCARCINOMA MOR CELLS IS ASSOCIATED WITH UP-REGULATION OF ADAPTOR PROTEIN RUK/CIN85 AND EPITHELIAL-TO-MESENCHYMAL TRANSITION (EMT)

Author:

Raynich Y.,

Abstract

The aim of this study was to elucidate the regulatory role of Ruk/CIN85 in chemoresistance and EMT using human NSCLC MOR cells as a model. Methods. MOR (ECACC 84112312) cell line and drug-resistant cell line MOR/0.2R (ECACC 96042335) were cultured under standard conditions in DMEM medium. Knockdown of Ruk/CIN85 in MOR/0.2R cells was performed using shRNA lentiviral technology. Expression levels of Ruk/CIN85, vimentin and E-cadherin were estimated by RT-PCR. Results and Discussion. According to the results of qPCR, MOR/0.R cells showed an extremely higher level of Ruk/CIN85 mRNA expression, more than 10 times higher than the parental MOR cells. Preliminary data revealed that knockdown of Ruk/CIN85 in the MOR/0.2R cells led to significant decrease of their resistance to doxorubicin and development of epithelial phenotype. High content of RukCIN85 in doxorubicin-resistant (MOR/R) cells strongly correlate with their mesenchymal phenotype (high expression level of vimentin and low – E-cadherin), while its down-regulation is followed by restoration of expression values characteristic of parental MOR cells. Conclusions. In summary, high expression level of Ruk/CIN85 in doxorubicin-resistant MOR cells and the reversion of EMT-related transcriptome parameters and sensitivity to drug due to knockdown of adaptor protein in this subline suggests its involvement in regulation of EMT as well as cancer cells chemoresistance. Thus, the adaptor protein Ruk/CIN85 can be considered as a tissue-specific marker of carcinogenesis and perspective target for drug development.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3