INFLUENCE OF SYSTEMIC INFLAMMATORY RESPONSE SYNDROME ON THE DEVELOPMENT OF OXIDATIVE STRESS DURING SIMULATION OF CHRONIC ALCOHOL INTOXICATION IN RATS

Author:

Mykytenko A. O.,

Abstract

The aim of our study was to analyze changes in the development of oxidative stress in the liver of rats with chronic alcohol intoxication against the background of systemic inflammatory response syndrome based on the study of catalase and superoxide dismutase activity, concentration of malonic dialdehyde, oxidatively modified proteins and sulfide anion and superoxide anion production. Methods. Experimental studies were performed on 12 male Wistar rats weighing 180‒220 g. Animals were divided into two groups: 1 ‒ control and 2 ‒ animals, on which we simulated alcoholic hepatitis and SIRS. The activity of catalase and superoxide dismutase (SOD), the concentration of malonic dialdehyde (MDA) , oxidatively modified proteins (OMP) sulfide anion and superoxide anion production were studied in the rat liver homogenate. The obtained results were subjected to statistical processing using the Mann-Whitney test. Results. Analyzing the development of oxidative stress in the liver of rats, on which we simulated the combined effects of SIRS and prolonged alcohol intoxication, we found that the activity of SOD increased by 1.72 times (P<0.05), and catalase decreased by 1.18 times (P<0.05) compared with the control group. The production of superoxide anion radical in the liver of rats increased 2.21 times (P<0.05) in the group of animals with combined exposure to bacterial LPS and alcohol intoxication compared to control. The concentration of MDA increased 2.25 times (P<0.05), and OMP by 9.5 times (P<0.05) compared with control group. The concentration of sulfide anion in the liver of rats under the conditions of modeling the combined effects of SIRS and alcohol intoxication decreased by 1.44 times (P <0.05) compared with the control. Conclusions. Modeling of alcohol intoxication against the background of systemic inflammatory response syndrome leads to oxidative damage to lipid and protein structures of the liver due to increased production of superoxide anion radical and imbalance of antiradical protection.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3