Determination of plasma parameters in a jet of a gas-discharge source using an insulated probe system with cylindrical electrodes

Author:

Lazuchenkov D.N.ORCID,

Abstract

The aim of this work is to develop a procedure for determining the ion dissociation degree and the electron density in a supersonic jet of a gas-discharge source of collisionless plasma from the results of measurements of the current collected by an insulated probe system with transversely oriented cylindrical electrodes. Based on a mathematical model of current collection by an insulated probe system and an asymptotic solution for the probe current in the electron saturation region obtained previously, new computational formulas for plasma parameter determination are derived. It is shown that, in comparison with a single Langmuir probe, an insulated probe system provides more information in diagnosing a jet of a gas-discharge source of laboratory plasma. The effect of the probe to reference electrode current collection area ratio and the probe measurement errors on the plasma parameter determination accuracy is studied numerically. Within the framework of the mathematical model of current collection, an analysis is made of the effect of the geometrical parameters of the insulated probe system on the method error in plasma parameter determination using the asymptotic solution for the probe current in the electron saturation region. For the determination of the ion dissociation degree, optimal values of the insulated probe system’s bias potentials and geometrical parameters (probe to reference electrode area ratio) are found. For the adopted assumptions, the reliability of ion dissociation degree and electron density determination is estimated as a function of the geometrical parameters of the insulated probe system and the probe current and probe potential (relative to the reference electrode) measurement accuracy. The obtained results may be used in the diagnostics of the laboratory plasma of a gas-discharge source with ion acceleration in the electric field of the jet.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3