Self-vibrations of a truncated conical sandwich shell with a honeycomb core made by additive technologies

Author:

Avramov K.V.ORCID, ,Uspensky B.V.,

Abstract

This paper presents a nonlinear mathematical model of self-vibrations of conical sandwich shells with a honeycomb core made by additive technologies. The vibrations of the structure are described by fifteen unknowns. Each layer of the structure is described by five unknowns: three projections of the displacements of the layer middle surface and two rotation angles of the middle surface normal. Displacement continuity conditions at the layer interfaces are used. The higher-order shear theory is used to describe the stress-strain state of the structure. The case of conical sandwich shell ? supersonic gas flow interaction is considered. Due to this interaction, self-vibrations of the shell structure are set up. In their analysis, the geometrical nonlinearity of the structure is accounted for. Motion equations of the structure are derived using the assumed-mode method, which uses the kinetic and the potential energy of the structure. The self-vibrations are represented as eigenmode expansions, which contain a set of generalized coordinates. A system of nonlinear autonomous ordinary differential equations in the generalized coordinates is derived. The self-vibrations are studied using a combination of the shooting technique and the parameter continuation method. Multipliers are calculated to analyze the stability of periodic vibrations and their bifurcations. The dynamic instability of the structure’s trivial equilibrium is studied by numerical simulation. For clamped-clamped and cantilever shells, the properties of their periodic, quasiperiodic, and chaotic motions are analyzed in detail.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3