Nonlinear oscillations of a sandwich plate with a 3D-printed honeycomb core

Author:

Avramov K.V.ORCID, ,Uspensky B.V.,Derevianko I.I., ,

Abstract

A three-layer sandwich plate with a FDM-printed honeycomb core made of polycarbonate is considered. The upper and lower faces of the sandwich are made of a carbon fiber-reinforced composite. To study the response of the sandwich plate, the honeycomb core is replaced with a homogeneous layer with appropriate mechanical properties. To verify the honeycomb core model, a finite-element simulation of the representative volume of the core was performed using the ANSYS software package. A modification of the high-order shear theory is used to describe the structure dynamics. The assumed-mode method is used to simulate nonlinear forced oscillations of the plate. The Rayleigh–Ritz method is used to calculate the eigenfrequencies and eigenmodes of the plate, in which the displacement of the plate points during nonlinear oscillations are expanded. This technique allows one to obtain a finite-degree-of-freedom nonlinear dynamic system, which describes the oscillations of the plate. The frequency response of the system is calculated using the continuation approach applied to a two-point boundary value problem for nonlinear ordinary differential equations and the Floquet multiplier method, which allows one to determine the stability and bifurcations of periodic solutions. The resonance behavior of the system is analyzed using its frequency response. The proposed technique is used to analyze the forced oscillations of a square three-layer plate clamped along the contour. The results of the analysis of the free oscillations of the plate are compared with those of ANSYS finite-element simulation, and the convergence of the results with increasing number of basis functions is analyzed. The comparison shows that the results are in close agreement. The analysis of the forced oscillations shows that the plate executes essentially nonlinear oscillations with two saddle-node bifurcations in the frequency response curve, in which the periodic motion stability of the system changes. The nonlinear oscillations of the plate near the first fundamental resonance are mostly monoharmonic. They may be calculated using the describing function method.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3