Mathematical simulation of hard excitation of cavitation self-oscillations in a liquid-propellant rocket engine feed system

Author:

Dolgopolov S.I.ORCID,

Abstract

Hard self-oscillation excitation differs from soft excitation in that self-oscillations are set up only if the initial departure of an oscillating system from equilibrium is strong enough. Experimental studies of cavitation oscillations in hydraulic systems with cavitating pumps of liquid-propellant rocket engines ((LPREs) include works that describe hard excitation of cavitation oscillations. By mow, hard excitation regimes have not been explained theoretically, to let alone their mathematical simulation. This paper presents a mathematical model of hard excitation of cavitation oscillations in a LPRE feed system, which comprises a mathematical model of cavitation self-oscillations in a LPRE feed system that accounts for pump choking and an external disturbance model. A mechanism of hard excitation of cavitation oscillations in a LPRE feed system is proposed. It is well known that hard excitation of cavitation self-oscillations may take place in cases where the pump feed system is near the boundary of the cavitation self-oscillation region. In this case, the self-oscillation amplitudes are small, and they are limited only by one nonlinearity (cavity volume vs. pump inlet pressure and flow relationship). Under excitation of sufficient intensity, the pump inlet pressure and flow find themselves in the choking characteristic; this may be responsible for choking and developed cavitation self-oscillations, which remain of interrupted type and do not go into the initial small-amplitude oscillations even after excitation removal. A mathematical simulation of hard excitation of cavitation self-oscillations was conducted to determine the parameters of cavitation self-oscillations in a bench feed system of a test pump. The simulation results show that without an external disturbance the pump system exhibits small-amplitude self-oscillations. On an external disturbance, developed (interrupted) cavitation oscillations are set up in the system, which is in agreement with experimental data. The proposed mathematical model of hard excitation of cavitation self-oscillations in a LPRE feed system allows one to simulate a case observed in an experiment in which it was possible to eliminate cavitation self-oscillations by an external disturbance.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Reference12 articles.

1. 1. Strelkov S. P. Introduction to Oscillation Theory. Moscow: Nauka, 1964. 440 pp. (in Russian).

2. 2. Migulin V. V., Medvedev V. I., Mustel' E. R., Parygin V. N. Foundations of Oscillation Theory. Moscow: Nauka, 1964. 392 pp. (in Russian).

3. 3. Teodorchuk K. F. Self-Oscillatory Systems. Moscow: Nauka, 1952. 271 pp. (in Russian).

4. 4. Natanzon M. S., Bal'tsev I. I., Bazhanov V. V., Leidervarger M. P. Experimental study of cavitation self-oscillations in an inducer-equipped centrifugal pump. Izvestiya AN SSSR. Energetika i Transport. 1973. No. 2. Pp. 151-157. (in Russian).

5. 5. Glikman B. F. Automatic Control of Liquid-Propellant Rocket Engines. Moscow: Mashinostroyeniye, 1974. 396 pp. (in Russian).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3