A quantum chemical study on the effect of titanium dioxide modification with non-metals on its spectral characteristics

Author:

Smirnova O. V., ,Grebenyuk A. G.,Lobanov V. V., ,

Abstract

The experimental results obtained in the study on the possibility of sensitizing titanium dioxide (polymorphic anatase phase) to the visible region of the spectrum by doping and co-doping with impurities of non-metals in order to create effective photocatalysts for the decomposition of organic compounds have been analyzed. The presence of impurity atoms appears to result in a change in the electronic structure of the titanium dioxide matrix, in the appearance of “impurity bands” and in the narrowing of the energy gap of titanium dioxide. Such a modification is accompanied by an extension of the spectral range of sensitivity of photoactive solids to the long-wavelength region of the spectrum and, therefore, can be used to improve the catalytic properties of these materials. Spectral manifestations of carbon impurities in titanium dioxide in the form of carbide and carbonate, as well as sulfur in the forms of sulfite, sulfide, and sulfate, have been studied by the density functional theory method. A Ti14H22O39 cluster model was chosen for the titanium dioxide matrix. The calculations were carried out in the framework of the cluster approximation, using functional B3LYP and basis set 6-31G (d, p). Comparison of the results of quantum chemical calculations with the available experimental data shows that the impurity sulfur and carbon atoms in titanium dioxide, which are in different coordination states and different oxidation states, appear in different spectral ranges. This circumstance makes it possible to elucidate the structure of the samples based on the experimental spectra. A change in the coordination and oxidation states of impurity atoms leads to spectral shifts and splitting of peaks, which can reach 1.5 eV (XPS). The presence of admixtures of non-metals leads to a change in color (deepening in the case of sulfide or carbide) of the samples, appearing in the corresponding UV spectra.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3