Convolutional Neural Networks for Determining the Ion Beam Impact on a Space Debris Object

Author:

REDKA M.ORCID,KHOROSHYLOV C.ORCID

Abstract

Introduction. Space debris is a serious problem that significantly complicates space activity. This problem can be mitigated by active space debris removal. The ion beam shepherd (IBS) concept assumes the contactless removal of a space debris object (SDO) by the plume of an ion thruster (IT). Techniques for determining the force impact from the IT to the SDO are of crucial importance for implementing the IBS concept.Problem Statement. A launcher’s upper stage, approximated by a cylinder, is considered an SDO deorbited by the plume of the IT. The SDO can change its orientation and position relative to the shepherd satellite. The shepherd satellite shall be able to determine the force transmitted to the SDO by the IT, using only SDO’s images as the input information.Purpose. The study aims to develop a neural net model that can map an SDO image to the force transmitted by an IT plume to this object and estimate the accuracy of such models.Material and Methods. Plasma physics methods are used to obtain ground truth values of the ion beam force. The deep learning methodology is applied to create neural net models.Results. Three different approaches for end-to-end ion force determination have been investigated. The first model uses a single convolutional neural net (CNN). The second model is an ensemble network consisting of four sub-models, and a classifier is used to pick the correct sub-model. The last model is similar to the first one but is trained on all images used for the second model. After training, all three models’ accuracy and computational complexity are estimated. These estimates demonstrate the acceptable performance of CNN-based models.Conclusions. This paper demonstrates that CNNs can be used to determine the force impact without knowledge about the SDO position and orientation and significantly faster than the previous methods.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Law,Management of Technology and Innovation,Information Systems and Management,Computer Science Applications,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3