Expanding the Technological Possibilities of Multilayer Micro-Plasma Powder Deposition Process by Optimizing the Quality and Composition of Process Gases

Author:

CHERVIAKOV M.ORCID,YAROVYTSYN O.ORCID,KHRUSHCHOV H.ORCID

Abstract

Introduction. Mastering the micro-plasma powder deposition (MPWD) technology for refurbishing parts of nickel-based super alloy aircraft gas turbine engine (GTE) has been remaining a relevant task of the Ukrainian air craft industry for, at least, 15 last years.Problem Statement. MPWD or subsequent heat treatment of GTE parts made of nickel-based super alloy after long-term operating hours, with high γ'-phase content, might reveal increased cracking susceptibility. The search for ways to optimize the welding deposition technology has shown the necessity to scrutinize the positive technological effect of rational choice of the quality and content of process (shielding, plasma and transporting) gases.Purpose. To study the effect of process gas content on the heat source parameters, the conditions of the formation of deposited metal and its quality.Material and Methods. Comparative study of the micro-plasma (PPS04 plasmatron, UPNS-304M welding machine) and TIG (VSVU-315 power source) arc heat parameters depending on welding current and process gas has been conducted by the conventional flow calorimetry technology. Comparative estimation of the total work piece heat input parameters has been made based on the previously developed methodology with registering the welding current parameters based on m-DAQ14 analog-to-digital converter (ADC).Results. The comparative research during MPWD of sample parts has shown that the content and quality of process gases can significantly (up to 2.5 times) affect the amount of heat transferred into the work piece and, respectively, the possibility to provide the technological strength of “base-deposited metal” welded joint.Conclusions. The industrial MPWD process optimization by the criteria of work piece heat input parameters, technological strength of “base-deposited metal” welded joint and filler powder consumption,by means of increasing argon (plasma and transporting gas) quality by other gases impurities content and switch to 90% Ar + 10% Н2 argonhydrogen mixture shielding gas has been established to be promising and expedient way to solve the problem.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Law,Management of Technology and Innovation,Information Systems and Management,Computer Science Applications,Engineering (miscellaneous)

Reference27 articles.

1. Paton, B. E., Gvozdetskiy, V. S., Dudko, D. A. (1979). Micro-plasma welding. Kyiv [in Russian].

2. Gvozdetskiy, V. S. (1974). Welding arc contraction. Automatic welding, 2, 1-4 [in Russian].

3. Peychev, G. I. (2005). Repair of operation-worn cast turbine blades bandage shelve constructive elements made of JStype alloys. Aircraft and space technic and technology, 9(25), 221-223 [in Russian].

4. Yushchenko, K. A., Savchenko, V. S., Yarovitsyn, O. V., Nakonechny, A. A., Nastenko, G. F., Zamkovoj, V. E., Belozertsev, O. S., Andrejchenko, N. V. (2010). Development of the technology for repair microplasma powder cladding of flange platform faces of aircraft engine high-pressure turbine blades. The Paton Welding Journal, 8, 25-29.

5. Yushchenko, K. A.,Yarovytsyn, O. V. Technological advancement of refurbishment process for the aircraft GTE blade's upper bangade shelf. Complex target program of NAS Ukraine «Operation resource and safety problems of buildings and machine constructions», article digest on results achieved in 2010-2012. Paton EWI NAS Ukraine, Kyiv. 506-509 [In Ukrainian].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3