Use of infrared spectroscopy methods for research of peat (Honchary deposit, Lviv Region)

Author:

Yakovenko Myroslava,Khokha Yurii

Abstract

The problems of peat analysis using near-infrared reflectance (NIR) and mid-infrared reflectance (MIR) spectroscopy methods are considered. Infrared spectroscopic researches of selected peat samples in a vertical section (depth 0–140 cm) from the Honchary deposit of the Lviv Region were carried out using instrumental analytical methods of infrared spectroscopy (near-infrared reflectance, NIR and mid-infrared reflectance, MIR) in order to determine the characteristics of the chemical group composition, mineral and organic components of peat to assess the quality of peat and its further exploitation in various industries. As a result, the spectra of chemical compounds were identified, among which the largest number are: hydroxyl, methylene, methyl and aromatic groups. Direct analysis of infrared spectrogram sections of the studied peat showed significantly greater informativeness of IR spectroscopy in the mid-infrared range (400–4000 cm−1) in contrast to the mid-infrared frequency range (from 3900 to 7400 cm−1). The possibility and effectiveness of using near- and mid-infrared spectroscopy methods to analyze the chemical composition of peat and obtain information on the structure of organic matter at the level of functional groups has been assessed. The advantage of this method in comparison with other instrumental research methods is also its speed and expressivity – the total time required for the preparation and analysis of peat samples was less than 5 minutes compared to 10–16 hours required for determining the content of moisture, proteins, lipids and ash by reference standard methods. Near-infrared reflectance (NIR) and mid-infrared reflectance (MIR) spectroscopy methods can be used and effectively applied in combination with other methods as an analytical tool for peat quality monitoring, simultaneous measurement of several quality parameters and its further use in various industries and development of environmentally friendly technologies.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Reference14 articles.

1. Bellamy, L. J. (2013). The infra-red spectra of complex molecules. Springer Science & Business Media.

2. Burns, D. A., & Ciurczak, E. W. (Eds.). (2008). Handbook of near-infrared analysis (3rd ed.). CRC Press. https://doi.org/10.1201/9781420007374

3. Cross, A. D. (1960). An introduction to practical infra-red spectroscopy. Butterworths Scientific Publications.

4. A guide to near-infrared spectroscopic analysis of industrial manufacturing processes. (2013). Herisau: Metrohm AG.

5. Instytut gruntoznavstva ta ahrokhimii imeni O. N. Sokolovskoho Ukrainskoi akademii ahrarnykh nauk. (2008). Melioranty gruntu ta seredovyshcha rostu. Hotuvannia prob do khimichnoho ta fizychnoho analizu, vyznachennia vmistu sukhoi rechovyny, vmistu volohy ta laboratorno ushchilnenoi nasypnoi shchilnosti (EN 13040:1999, IDT) (DSTU EN 13040:2005). [in Ukrainian]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3