Principal Modernization Solutions for a 300 MW Power Unit to be Converted to Operate at Ultra-Supercritical Steam Parameters

Author:

Kostikov Andrii O.ORCID, ,Shubenko Oleksandr L.ORCID,Subotin Viktor H.ORCID,Senetskyi Oleksandr V.ORCID,Tarasova Viktoriia O.ORCID,Holoshchapov Volodymyr M.,Babak Mykola Yu., , , , , , ,

Abstract

This paper analyses the state of power engineering in Ukraine and the main trends in the development of the world market in the field of converting high-capacity powerful power units of thermal power plants into ultra-supercritical (USC) ones. It is shown that the energy sector of Ukraine requires special attention and the introduction of new modern technical solutions. Worldwide trends indicate that the emphasis is now on increasing the steam parameters before a turbine to ultra-supercritical ones. This allows one both to increase the efficiency of power units and to reduce thermal emissions, fighting the global environmental problem of climate warming. The implementation of this approach is proposed taking into account the realities of the Ukrainian economy and the available technical capabilities of the power engineering industry. This paper presents the results of variational computational studies of the thermal scheme of the 300 MW power unit of the K-300-23.5 turbine to be converted into a USC one. The problem was solved under the condition of maximizing the preservation of the thermal scheme, increasing the efficiency of the power unit and minimizing capital investments during the modernization of the turbine. It was chosen to preserve the regeneration system, as well as the medium-pressure (MP) and low-pressure (LP) cylinders. Considered and calculated were variants with the addition to the existing turbine of a USC cylinder and the creation of a new high-pressure cylinder (HPC) with insignificant changes in its overall characteristics. The results of computational studies showed that the most rational variant for modernizing the 300 MW turbine plant is the creation of a new HPC designed for operation at USC steam parameters as well as the addition to the IPC of a new cylinder with the purpose of increasing the reheat steam parameters while preserving the regeneration system.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Reference21 articles.

1. 1. Khalatov, A. A. & Yushchenko, K. A. (2012). Sovremennoye sostoyaniye i perspektivy ispolzovaniya gazoturbinnykh tekhnologiy v teplovoy i yadernoy energetike, metallurgii i ZhKKh Ukrainy [Current state and prospects of using gas turbine technologies in thermal and nuclear energy, metallurgy and housing and communal services of Ukraine]. Promyshlennaya teplotekhnika - Industrial Heat Engineering, vol. 34, no. 6, pp. 30-45 (in Russian).

2. 2. Lukowicz, H., Dykas, S., Stepczynska, K., & Rulik, S. (2011). The effect of the internal reheat application on the efficiency of the 900 MW ultra-supercritical coal-fired power unit. Archives of Thermodynamics, vol. 32, iss. 3, pp. 127-144. https://doi.org/10.2478/v10173-011-0018-0.

3. 3. (2012). Technology roadmap: High-efficiency, low-emissions, coal-fired power generation. Paris: International Energy Agency, 48 p. https://www.iea.org/reports/technology-roadmap-high-efficiency-low-emissions-coal-fired-power-generation. (Accessed 10 November 2020).

4. 4. Liu, X. J., Kong, X. B., Hou, G. L., & Wang, J. H. (2013). Modeling of a 1000 MW power plant ultra super-critical boiler system using fuzzy-neural network methods. Energy Conversion and Management, vol. 65, pp. 518-527. https://doi.org/10.1016/j.enconman.2012.07.028.

5. 5. Mohamed, O., Khalil, A., & Wang, J. (2020). Modeling and control of supercritical and ultra-supercritical power plants: A review. Energies, vol. 13, iss. 11, pp. 2935-2958. https://doi.org/10.3390/en13112935.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3