Abstract
The thermal scheme of a power generating plant with a remote heat exchanger operating according to the Brayton cycle with energy recuperation is considered. It is assumed that the plant will work on non-certified (cheap) biofuel. It is shown that, in contrast to the usual Brayton cycle, in the cycle with energy recuperation, the greatest influence on the thermal efficiency is the heating temperature of the working medium and the internal efficiency of the main components of the plant, such as the compressor and the turbine. Also, in contrast to the usual Brayton cycle, a higher efficiency of the plant is achieved with smaller degrees of pressure reduction (increase) in the turbine (compressor). It was established that even at a relatively low temperature of the working medium heating (500 ºC), with high efficiency of the compressor and turbine, it is possible to achieve good characteristics of the power plant as a whole. At a temperature of up to 850 ºC, a thermal efficiency of 40% is achieved, but in this case the cost of materials and production increases. For a final conclusion about the possibility of using the proposed plant and its efficiency, it is necessary to conduct additional studies, in particular, of its main elements, such as a compressor, turbine, heat exchanger and others.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Reference25 articles.
1. 1. (2020). Yevropeiskyi zelenyi kurs: mozhlyvosti ta zahrozy dlia Ukrainy [The European green course: Opportunities and threats for Ukraine]: Analytical document. Resource and Analytical Center "Society and Environment", 74 p. (in Ukrainian). https://dixigroup.org/storage/files/2020-05-26/european-green-dealwebfinal.pdf.
2. 2. Tian, X., An, C., & Chen, Z. (2023). The role of clean energy in achieving decarbonization of electricity generation, transportation, and heating sectors by 2050: A meta-analysis review. Renewable and Sustainable Energy Reviews, vol. 182, article no. 113404. https://doi.org/10.1016/j.rser.2023.113404.
3. 3. Kudria, S. O. (ed.) (2020). Vidnovliuvani dzherela enerhii [Renewable energy sources]. Kyiv: Institute of Renewable energy of the National Academy of Sciences of Ukraine, 392 p. (in Ukrainian).
4. 4. Jones, D. (2023). European Electricity Review 2023: Report. EMBER-climate: official site. https://ember-climate.org/insights/research/european-electricity-review-2023/#supporting-material-downloads.
5. 5. Naraievskyi, S. V. (2019). Porivnialnyi analiz efektyvnosti roboty soniachnoi ta vitrovoi enerhetyky na svitovomu rynku [Comparative analysis of the efficiency of solar and wind energy on the world market]. Ekonomika ta derzhava - Economy and the state, no. 5, pp. 33-38 (in Ukrainian). https://doi.org/10.32702/2306-6806.2019.5.33.