Increasing the Accuracy of Determining the Cardiothoracic Ratio with the Help of an Ensemble of Neural Networks

Author:

Koniukhov Vladyslav D.ORCID, ,Ugrimov Serhii V.ORCID,

Abstract

The cardiothoracic ratio is one of the main screening tools for heart health. Cardiothoracic ratio is usually measured manually by a cardiologist or radiologist. In the era of neural networks, which are currently developing very rapidly, we can help doctors automate and improve this process. The use of deep learning for image segmentation has proven itself as a tool that can significantly accelerate and improve the process of medical automation. In this paper, a comparative analysis of the use of several neural networks for the segmentation of the lungs and heart on X-ray images was carried out for further improvement of the automatic calculation of the cardiothoracic ratio. Using a sample of 10 test images, manual cardiothoracic ratio measurements and 7 automatic measurement options were performed. The average accuracy of the measurement of the cardiothoracic ratio of the best of the two neural networks is 93.80%, and the method that used the ensemble of networks obtained a result of 97.15%, with the help of the ensemble of neural networks it was possible to improve the ratio determination by 3.35%. The obtained results indicate that thanks to the use of an ensemble of neural networks, it was possible to improve the result of automatic measurement, and also testify to the effectiveness and prospects of using this method in the medical field.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3